Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add filters








Year range
1.
Chinese Journal of Biotechnology ; (12): 7-18, 2023.
Article in Chinese | WPRIM | ID: wpr-970355

ABSTRACT

Viruses are powerful tools for the study of modern neurosciences. Most of the research on the connection and function of neurons were done by using recombinant viruses, among which neurotropic herpesvirus is one of the most important tools. With the continuous development of genetic engineering and molecular biology techniques, several recombinant neurophilic herpesviruses have been engineered into different viral tools for neuroscience research. This review describes and discusses several common and widely used neurophilic herpesviruses as nerve conduction tracers, viral vectors for neurological diseases, and lytic viruses for neuro-oncology applications, which provides a reference for further exploring the function of neurophilic herpesviruses.


Subject(s)
Herpesviridae/genetics , Neurosciences , Genetic Vectors/genetics , Genetic Engineering , Neurons
2.
Chinese Journal of Biotechnology ; (12): 1721-1733, 2018.
Article in Chinese | WPRIM | ID: wpr-776296

ABSTRACT

Viral infection of cells is a highly intricate process that involves the complex virus-cell interactions. Recently, virologists can monitor the virus life cycle at the primary infection site in real-time using various virus tracking techniques. Herpesviruses, a class of large enveloped DNA viruses, are important pathogens threatening the health of humans and animals. This review discussed the applications of different virus tracking techniques in herpesvirus studies, to provide new insights into virus-cell interactions and replication mechanisms of herpesviruses. Though the techniques have widely been exploited, some issues need to be addressed, such as the selection of the optimal site to insert reporters and the inability to track the whole process of the virus life cycle. With the updated tracking techniques, hopefully, more complex replication mechanismsof herpesviruses will be revealed in detail.


Subject(s)
Animals , Humans , Herpesviridae , Virulence , Physiology , Virus Diseases , Virus Physiological Phenomena , Virus Replication
3.
Chinese Journal of Biotechnology ; (12): 1211-1212, 2017.
Article in Chinese | WPRIM | ID: wpr-242265

ABSTRACT

Veterinary biotechnologies that represent the applications of biotechnologies in veterinary science are advancing rapidly in the last decade in spite of relatively late kickoff. This special issue consists of four sections, reviews, new technologies, new methods and others, presenting the recent progress in diagnostic assays, vaccines and others of emerging and reemerging animal infectious diseases.

4.
Chinese Journal of Biotechnology ; (12): 1213-1223, 2017.
Article in Chinese | WPRIM | ID: wpr-242264

ABSTRACT

Vaccination is an important strategy to prevent infectious diseases. However, low antigen yield of vaccine producing strains may lead to high cost of vaccines, low antigen production and vaccine failure. In recent years, many efforts have been made to improve the antigen yield of many vaccines. This mini-review summarizes various methods for increasing the antigen yield for vaccine production, including genetic modification of viruses, improvement of the adaptation of viruses to cells, and optimization of antigen expression systems and manufacturing procedures. Furthermore, we discuss the advantages and the problems of current strategies, as well as indicate the perspectives.

5.
Chinese Journal of Biotechnology ; (12): 1235-1243, 2017.
Article in Chinese | WPRIM | ID: wpr-242262

ABSTRACT

Classical swine fever (CSF), one of OIE-listed diseases, is a highly contagious and economically important disease of pigs. Classical swine fever virus (CSFV) is the causative agent of CSF. The capsid (C) protein and the glycoproteins Erns, E1 and E2, are structural components of the virus. E2 is the most immunogenic protein of the CSFV glycoproteins, inducing neutralizing antibodies that provide protection against lethal CSFV challenge. In a previous study, we developed a murine MAb HQ06 against the E2 protein of CSFV. In this study, the variable region genes from HQ06 and constant regions gene of swine antibody are fused and cloned into the eukaryotic expression vectors to establish a cell line which can stably express a chimeric porcinized MAb (cHQ06) against E2 in CHO cell. The purified cHQ06 antibody protein was determined to be successfully generated, which exhibited high reactivity between cHQ06 and the E2 protein of CSFV by enzyme-linked immunosorbent assay (ELISA) and Western blotting. More importantly, we investigated the neutralizing activity of cHQ06 against CSFV. In conclusion, this study generated cHQ06 for efficient and stable production which can be used against to develop novel diagnostic assays, investigate the structure and function of the E2 protein and generate novel preparations of diagnosis and treatment.

6.
Chinese Journal of Biotechnology ; (12): 880-890, 2013.
Article in Chinese | WPRIM | ID: wpr-233191

ABSTRACT

Classical swine fever (CSF), an acute and highly contagious disease of swine, is caused by classical swine fever virus. CSF is one of the most devastating diseases to the pig industry worldwide and results in serious economic losses. Currently prophylactic vaccination is still an important strategy for the control of CSF. Live attenuated vaccines (such as C-strain) are safe and effective. However, there are significant changes in the clinical features of CSF, displaying concurrent typical and atypical CSF, and simultaneous inapparent and persistent infections. Immunization failure has been reported frequently and it is difficult to distinguish between wild-type infected and vaccinated animals (DIVA). So there is an urgent need to develop more effective and safer DIVA or marker vaccines for the control of CSF. In this review, some of the most recent advances in new-type vaccines against CSF, including DNA vaccines, live virus-vectored vaccines, protein or peptide-based vaccines, gene-deleted vaccines and chimeric pestivirus-based vaccines, are reviewed and discussed.


Subject(s)
Animals , Classical Swine Fever , Classical Swine Fever Virus , Swine , Vaccination , Vaccines, Attenuated , Allergy and Immunology , Vaccines, DNA , Allergy and Immunology , Vaccines, Subunit , Allergy and Immunology , Viral Vaccines , Allergy and Immunology
7.
Chinese Journal of Biotechnology ; (12): 281-289, 2010.
Article in Chinese | WPRIM | ID: wpr-336230

ABSTRACT

In 1990, it was reported that the naked DNA encoding an antigen (so-called DNA vaccine) transduced directly into the muscle is able to induce immune responses just like antigen inoculation. Since then, a number of DNA vaccines against different diseases have been developed and shown to induce different levels of specific humoral and/or cell-mediated immunity. Efforts have been made to develop effective DNA vaccines against classical swine fever (CSF). This review covered the following aspects in the development and application of CSF DNA vaccines: construction and evaluation, application of adjuvants, combination with other vaccines and the existing problems and solutions.


Subject(s)
Animals , Adjuvants, Immunologic , Pharmacology , Classical Swine Fever , Swine , Vaccines, DNA , Allergy and Immunology , Viral Envelope Proteins , Genetics , Allergy and Immunology , Viral Vaccines , Allergy and Immunology
8.
Chinese Journal of Biotechnology ; (12): 439-447, 2010.
Article in Chinese | WPRIM | ID: wpr-336208

ABSTRACT

In order to ensure the biosafety of the IFN-gamma antiviral activity assay, we used a replication-deficient VSV carrying GFP as an interferon sensitive indicator virus (VSVdeltaG*G). The antiviral activities of porcine IFN-gamma expressed in Escherichia coli and in baculovirus on MDBK cells were assessed. The results showed that the antiviral activity of porcine IFN-gamma expressed in baculovirus could reach 10(5) IU/mL, while the porcine IFN-gamma expressed in E. coli showed some antiviral activity (32 IU/mL) after refolding. The results of the VSVdeltaG*G-based antiviral assay were almost identical to that of the VSV*GFP-based assay, suggesting it is highly feasible to use VSVdeltaG*G as a substitute for VSV*GFP, making assays for IFN-gamma antiviral activity safer and more accurate.


Subject(s)
Animals , Antiviral Agents , Pharmacology , Baculoviridae , Genetics , Metabolism , Escherichia coli , Genetics , Metabolism , Genetic Vectors , Genetics , Green Fluorescent Proteins , Genetics , Interferon-gamma , Genetics , Metabolism , Pharmacology , Recombinant Proteins , Genetics , Pharmacology , Swine , Vesiculovirus , Physiology
9.
Chinese Journal of Biotechnology ; (12): 1441-1448, 2009.
Article in Chinese | WPRIM | ID: wpr-296906

ABSTRACT

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), has been epidemic or endemic in many countries, and causes great economical losses to pig industry worldwide. Attenuated vaccines (such as C-strain) have played an important role in the control of CSF. Recently some new phenomena appear, such as atypical and persistent infections of CSF, immunization failure and so on. Meanwhile, eradication programs have been implemented in many countries, restricting the widespread applications of attenuated vaccines. Thus, currently the priority is to strengthen the research in pathogenesis and transmission mechanisms, as well as to develop marker vaccines. Recently, the applications of reverse genetics technology open up a new way for research of structure and function of CSFV proteins and development of novel vaccines against CSF. This review focuses on the progress of applications of reverse genetics in the functional analysis and marker vaccine development of CSFV, and also discusses the problems confronted now and prospective aspects in the study of CSFV.


Subject(s)
Classical Swine Fever Virus , Genetics , Cloning, Molecular , Genetics, Microbial , Methods , RNA, Viral , Genetics , Recombination, Genetic , Vaccines, Synthetic , Allergy and Immunology , Viral Vaccines , Genetics
10.
Chinese Journal of Biotechnology ; (12): 679-685, 2009.
Article in Chinese | WPRIM | ID: wpr-286657

ABSTRACT

We have previously evaluated a Semliki Forest virus (SFV) replicon vectored DNA vaccine (pSFV1CS2-E2) and a recombinant adenovirus (rAdV-E2) expressing the E2 glycoprotein of classical swine fever virus (CSFV) in pigs. The results showed that the immunized pigs were protected from virulent challenge, but few pigs showed short-term fever and occasional pathological changes following virulent challenge. To enhance the immunogenecity of the vaccines, we tried a prime-boost vaccination strategy using a combination of prime with pSFV1CS2-E2 followed by boost with rAdV-E2. The results showed that all the immunized pigs developed high-level CSFV-specific antibodies following prime-boost immunization. When challenged with virulent CSFV, the immunized pigs (n = 5) from the heterologous boost group showed no clinical symptoms, and CSFV RNA was not detected following challenge, whereas one of five pigs from the homologous boost group developed short-term fever and CSFV RNA was detected. This demonstrates that the heterologous prime-boost vaccination regime has the potential to prevent against virulent challenge.


Subject(s)
Animals , Adenoviridae , Genetics , Metabolism , Adenovirus E2 Proteins , Genetics , Allergy and Immunology , Classical Swine Fever , Allergy and Immunology , Classical Swine Fever Virus , Genetics , Allergy and Immunology , Genetic Vectors , Immunization, Secondary , Replicon , Genetics , Semliki forest virus , Genetics , Metabolism , Swine , Vaccines, DNA , Allergy and Immunology , Viral Envelope Proteins , Genetics , Metabolism , Viral Vaccines , Allergy and Immunology
11.
Chinese Journal of Biotechnology ; (12): 569-575, 2008.
Article in Chinese | WPRIM | ID: wpr-342869

ABSTRACT

The aim of this study was to construct the complete genome of Marek's disease virus serotype 814 strain as an infectious bacterial artificial chromosome (BAC). Using self-designed selection marker Eco-gpt (1.3 kb) and BAC vector pBeloBAC11 (7.5 kb), we constructed the transfer plasmid pUAB-gpt-BAC11. The plasmid pUAB-gpt-BAC11 and MDV total-DNA were cotransfected into secondary CEFs; we put the virus-containing cells in selection medium for eight rounds and obtained purified recombinant viruses. Recombinant viral genomes were extracted and electroporated into E. coli, BAC clones were identified by restriction enzyme digestion and PCR analysis. Finally, we obtained 38 BAC clones, DNA from various MDV-1 BACs was transfected into CEFs, and recombinant virus was reconstituted by transfection of MDV-BAC2 DNA. We successfully cloned the complete genome of MDV-1814 strain as an infectious bacterial artificial chromosome. With these cloned genomes, a revolutionary MDV-DNA engineering platform utilizing RED/ET recombination system was constructed successfully, which can help the understanding of MDV gene functions and promote the using of MDV as a vector for expressing foreign genes. In addition, it opens the possibility to generate novel MDV-1 vaccines based on the BACs.


Subject(s)
Animals , Chickens , Allergy and Immunology , Virology , Chromosomes, Artificial, Bacterial , Genetics , Cloning, Molecular , DNA, Recombinant , Genetics , DNA, Viral , Genetics , Fibroblasts , Metabolism , Genetic Engineering , Methods , Mardivirus , Classification , Genetics , Physiology , Serotyping , Transfection , Viral Proteins , Genetics , Physiology , Virus Replication
12.
Chinese Journal of Biotechnology ; (12): 598-603, 2008.
Article in Chinese | WPRIM | ID: wpr-342864

ABSTRACT

To compare the activity of different promoter in baculovirus-insect system, a series of recombinant baculoviruses were generated harboring the E-GFP reporter gene under the control of one of 5 promoters, including the ie1 promoter of shrimp white spot syndrome virus (WSSV), the truncated ie1 (mie1) promoter, the ETL promoter of the baculovirus, the elongated ETL (mETL) promoter, and the polyhedron promoter (P(PH)) of the baculovirus. The expression efficiency of the E-GFP reporter gene in the recombinant baculovirus-infected Sf9 cells was determined by flow cytometry. The results showed that both ie1 and mETL promoters had a strong promoter activity at early phase, while P(PH) showed a strong promoter activity at late phase. The ie1 promoter suggested the strongest promoter activity. The homologous region 1 (hr1) was also found to enhance the ETL promoter activity.


Subject(s)
Animals , Baculoviridae , Genetics , Metabolism , Green Fluorescent Proteins , Genetics , Metabolism , Insecta , Genetics , Metabolism , Penaeidae , Virology , Promoter Regions, Genetic , Genetics , Recombinant Proteins , Genetics , Transfection , White spot syndrome virus 1 , Genetics
13.
Chinese Journal of Biotechnology ; (12): 1714-1722, 2008.
Article in Chinese | WPRIM | ID: wpr-275350

ABSTRACT

Six recombinant plasmids co-expressing the wild-type GP5 gene or the codon-optimized GP5 gene (containing pan-DR epitope) of porcine reproductive and respiratory syndrome virus (PRRSV) and the E2 gene of classical swine fever virus (CSFV) or the E2 fused with the UL49 of pseudorabies virus (PrV) were constructed based on the suicidal DNA vaccine pSFV1CS-E2 described previously. Expression of GP5 and E2 was confirmed by indirect immunofluorescence assay. The immunogenicity of six plasmids was evaluated in BALB/c mouse model. For the six plasmids, low-level of E2 and GP5 protein specific antibodies could be detected in the sera of the immunized mice. Specific lymphoproliferative responses to the PRRSV or CSFV stimulation were induced in the splenocytes of the immunized mice as demonstrated by CFSE staining assay and WST-8 assay. Antigen specific IFN-gamma and L-4 secretion was detected in the splenocytes of some immunized mice by cytokine ELSIA. Fusion with the PrV UL49 in the suicidal vaccines induced significantly higher lymphoproliferative responses and cytokine secretion. Taken together, the suicidal DNA vaccines co-expressing GP5 and E2 could induce PRRSV and CSFV specific humoral and cell-mediated immune responses.


Subject(s)
Animals , Female , Mice , Antibodies, Viral , Blood , Antibody Formation , Cytokines , Blood , Immunity, Cellular , Lymphocytes , Allergy and Immunology , Mice, Inbred BALB C , Random Allocation , Vaccines, DNA , Allergy and Immunology , Viral Envelope Proteins , Genetics , Allergy and Immunology , Viral Structural Proteins , Genetics , Allergy and Immunology , Viral Vaccines , Allergy and Immunology
14.
Chinese Journal of Biotechnology ; (12): 1734-1739, 2008.
Article in Chinese | WPRIM | ID: wpr-275347

ABSTRACT

Classical swine fever (CSF), which is caused by classical swine fever virus (CSFV), causes significant losses in pig industry in many countries in Asia and Europe. The E2 glycoprotein of CSFV is the main target for neutralizing antibodies. In this study, a recombinant replication-defective human adenovirus expressing the CSFV E2 gene (rAdV-E2) was generated and evaluated for the immunogenicity in rabbits. The results showed that the rabbits immunized with rAdV-E2 developed high-level CSFV-specific antibodies. The rAdV-E2-immunized rabbits were all free of the regular fever and the viral replication in the spleen upon challenge with C-strain, which were seen in the rabbits immunized with the parent adenovirus of rAdV-E2. This indicates that the recombinant adenovirus can be an attractive candidate vaccine against CSF.


Subject(s)
Animals , Rabbits , Adenoviridae , Genetics , Allergy and Immunology , Metabolism , Antibodies, Viral , Blood , Genetic Vectors , Genetics , Immunization , Random Allocation , Recombinant Proteins , Genetics , Allergy and Immunology , Transfection , Viral Envelope Proteins , Genetics , Allergy and Immunology , Viral Vaccines , Allergy and Immunology
15.
Progress in Biochemistry and Biophysics ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-595266

ABSTRACT

Baculovirus-mediated gene transfer into mammalian cells has been used to develop non-replicative vector vaccines against a number of diseases in several animal models.A baculovirus pseudotyped with the glycoprotein of vesicular stomatitis virus was used as vector to construct the recombinant baculovirus expressing classical swine fever virus(CSFV) E2 protein under the control of ie1 promoter from white spot syndrome virus.The E2 gene was shown to be efficiently expressed in both insect and mammalian cells.Intramuscular injection of mice with the recombinant baculovirus resulted in the production of high-level CSFV-specific antibodies.Specific lymphoproliferative responses to the CSFV stimulation were induced in the splenocytes of the immunized mice as demonstrated by CFSE staining assay and WST-8 assay.The results indicates that the pseudotyped baculovirus-delivered gene can be a potential non-replicative vaccine against CSFV infection.

SELECTION OF CITATIONS
SEARCH DETAIL